The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP.

نویسندگان

  • Daniel D Isaac
  • Jerome S Pinkner
  • Scott J Hultgren
  • Thomas J Silhavy
چکیده

In Escherichia coli, the CpxR/A two-component system senses various types of extracytoplasmic stresses and responds by activating the expression of genes encoding periplasmic protein folding and trafficking factors that clear such stresses to ensure the organism's survival. The cpxP gene encodes a small, stress-combative periplasmic protein and is the most strongly induced member of the Cpx regulon. We demonstrate that the Cpx stress response suppresses the toxicity associated with two misfolded proteins derived from the P pilus of uropathogenic E. coli and that mutations in either cpxP or the gene for the periplasmic protease DegP prevent suppression by preventing the degradation of these proteins. Strikingly, the presence of a periplasmic misfolded protein substrate significantly enhances the proteolysis of CpxP by DegP. Our data suggest that CpxP functions as a periplasmic adaptor protein that is required for the effective proteolysis of a subset of misfolded substrates by the DegP protease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CpxP, a stress-combative member of the Cpx regulon.

The CpxA/R two-component signal transduction system of Escherichia coli can combat a variety of extracytoplasmic protein-mediated toxicities. The Cpx system performs this function, in part, by increasing the synthesis of the periplasmic protease, DegP. However, other factors are also employed by the Cpx system for this stress-combative function. In an effort to identify these remaining factors,...

متن کامل

Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP.

In Escherichia coli, envelope stress can be overcome by three different envelope stress responses: the sigma(E) stress response and the Bae and Cpx two-component systems. The Cpx envelope stress response is controlled by the sensor kinase CpxA, the response regulator CpxR, and the novel periplasmic protein CpxP. CpxP mediates feedback inhibition of the Cpx pathway through a hypothetical interac...

متن کامل

Absence of the Outer Membrane Phospholipase A Suppresses the Temperature-Sensitive Phenotype of Escherichia coli degP Mutants and Induces the Cpx and s Extracytoplasmic Stress Responses

DegP is a periplasmic protease that is a member of both the s and Cpx extracytoplasmic stress regulons of Escherichia coli and is essential for viability at temperatures above 42°C. [U-C]acetate labeling experiments demonstrated that phospholipids were degraded in degP mutants at elevated temperatures. In addition, chloramphenicol acetyltransferase, b-lactamase, and b-galactosidase assays as we...

متن کامل

Absence of the outer membrane phospholipase A suppresses the temperature-sensitive phenotype of Escherichia coli degP mutants and induces the Cpx and sigma(E) extracytoplasmic stress responses.

DegP is a periplasmic protease that is a member of both the sigma(E) and Cpx extracytoplasmic stress regulons of Escherichia coli and is essential for viability at temperatures above 42 degrees C. [U-(14)C]acetate labeling experiments demonstrated that phospholipids were degraded in degP mutants at elevated temperatures. In addition, chloramphenicol acetyltransferase, beta-lactamase, and beta-g...

متن کامل

Role of the PDZ domains in Escherichia coli DegP protein.

PDZ domains are modular protein interaction domains that are present in metazoans and bacteria. These domains possess unique structural features that allow them to interact with the C-terminal residues of their ligands. The Escherichia coli essential periplasmic protein DegP contains two PDZ domains attached to the C-terminal end of the protease domain. In this study we examined the role of eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 49  شماره 

صفحات  -

تاریخ انتشار 2005